DALEX: understand a black box model – conditional responses for a single variable

By smarterpoland

Screen Shot 2018-02-19 at 12.27.58 AM

(This article was first published on SmarterPoland.pl » English, and kindly contributed to R-bloggers)

Black-box models, like random forest model or gradient boosting model, are commonly used in predictive modelling due to their elasticity and high accuracy. The problem is, that it is hard to understand how a single variable affects model predictions.

As a remedy one can use excellent tools like pdp package (Brandon Greenwell, pdp: An R Package for Constructing Partial Dependence Plots, The R Journal 9(2017)) or ALEPlot package (Apley, Dan. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models (2016)).
OR
Now one can use the DALEX package to not only plot a conditional model response but also superimpose responses from different models to better understand differences between models.

Consult the following vignette to learn more about the DALEX package and explainers for a single variable.

OR
if you want to learn more about explainers, join our DALEX Invasion!
Find our DALEX workshops at SER (Warsaw, April 2018), ERUM (Budapest, May 2018), WhyR (Wroclaw, June 2018) or UseR (Brisbane, July 2018).

To leave a comment for the author, please follow the link and comment on their blog: SmarterPoland.pl » English.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more…

Source:: R News

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.