Lexicographic Permutations: Euler Problem 24

By Peter Prevos

(This article was first published on The Devil is in the Data, and kindly contributed to R-bloggers)

Euler Problem 24 asks to develop lexicographic permutations which are ordered arrangements of objects in lexicographic order. Tushar Roy of Coding Made Simple has shared a great introduction on how to generate lexicographic permutations.

Euler Problem 24 Definition

A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are:

012 021 102 120 201 210

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

Brute Force Solution

The digits 0 to 9 have permutations (including combinations that start with 0). Most of these permutations are, however, not in lexicographic order. A brute-force way to solve the problem is to determine the next lexicographic permutation of a number string and repeat this one million times.

nextPerm  1 && a[i - 1] >= a[i])

This code takes the following steps:

  1. Find largest index i such that a_{i-1} < a_i.
    1. If no such index exists, then this is already the last permutation.
  2. Find largest index j such that j geq i and a_j > a_{i-1}.
  3. Swap a_j and a_{i-1}.
  4. Reverse the suffix starting at a_i.


A more efficient solution is to use combinatorics, thanks to MathBlog. The last nine digits can be ordered in 9! = 362880 ways. So the first 9! permutations start with a 0. By extending this thought, it follows that the millionth permutation must start with a 2.

lfloor (1000000 - 1) / 9! rfloor  = 2

From this rule, it follows that the 725761st permutation is 2013456789. We now need 274239 more lexicographic permutations:

(1000000 - 1) - (2 times 9!) = 274239

We can repeat this logic to find the next digit. The last 8 digits can be ordered in 40320 ways. The second digit is the 6th digit in the remaining numbers, which is 7 (2013456789).

lfloor 274239 / 8! rfloor  = 6

274239 - (6 times 7!) = 32319

This process is repeated until all digits have been used.


R blogger Tony's Bubble Universe created a generalised function to solve this problem a few years ago.

The post Lexicographic Permutations: Euler Problem 24 appeared first on The Devil is in the Data.

To leave a comment for the author, please follow the link and comment on their blog: The Devil is in the Data.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Source:: R News

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.